
LaboratorioLaboratorio didi Progettazione ElettronicaProgettazione Elettronica

Content:

VHDL Overview

BasicBasic Concepts of digital designConcepts of digital design

Methodologies: upon designer mixture of abstraction,

modularity, hierarchy

Modularity: enables the designer to split big functional blocks and to

write a model for each part

Hierarchy: lets the designer build a design out of sub-modules which

may consist of several sub-modules, themselves. Each level of hierarchy

may contain modules of different abstraction levels

Abstraction: hiding of too detailed information. It is necessary to

differentiate between essential and non-essential information. Allows

description of different parts of a system with different amount of detail.

Modules which are needed only for the simulation do not have to be

described as detailed as modules that might be synthesized. Behavior,

RTL, Gate, Layout are the most common abstraction levels.

Modularity Modularity && HierarchyHierarchy

• Partitioning in several partial designs

• Restrict complexity

• Enable teamwork

• Study of alternative implementations

1) In this way, a complex system

can be divided into more

manageable subsystems

2) Different implementation

alternatives can be examined

for the (sub)modules

3) The existence of well defined

subsystems allows several

designers to work in parallel

on the same project

Chip A FPGA B CPLD C

Top Cell

Why HDL ?Why HDL ?

• Schematic entry with the current design complexities is not feasible

(though you will find who still loves it)

• HDL allows to move the abstraction level up, in order to ease the

design of complex designs.

• Software tools allow to easily move from one abstraction level to an

other one.

• The HDL code can be easily simulated.

• Last (but not least): the HDL code is technology independent. The

implications are …

VHDL: HistoryVHDL: History

• early `70s: Initial discussions by american Department of Defense (Dod)

• late `70s: Definition of requirements

• mid `82s: Contract of development with IBM, Intermetrics and TI

• mid `84s: Version 7.2

• mid `86s: IEEE-Standard – First Standard

• 1987: DoD adopts the standard � IEEE.1076

• mid `88s: Increasing support by Computer Aided Engineer (CAE)

manufacturers

• late `91s: Revision

• 1993: New standard – Official first update

• 1999: VHDL-AMS (Analog Mixed Signal) – Latest official upgrade

• The standard should be revised every 5 years

VHDL: Application FieldsVHDL: Application Fields

Hardware design

• ASIC (Application Specific Integrated Circuit)

• PASIC (Programmable ASIC; only once)

• FPGA (Field Programmable Gate Array) – Xilinx, Altera

• CPLD (Complex Programmable Logic Device) – Xilinx, Altera

• No DSP so far (Digital Signal Processor/Processing)

Software design

• VHDL - C interface (tool-specific)

• Main focus of research (hardware/software co-design)

An ongoing field of research is the hardware/software co-design

VHDL: Basic ConceptsVHDL: Basic Concepts
• VHDL:(Very high speed integrated circuit Hardware Description Language)

modeling of digital systems - concurrent and sequential statements -

machine readable specification

man-and machine-readable documentation

• International Standards

IEEE Std 1076-1987, IEEE Std 1076-1993,

Analogue and Mixed-Signal extension: VHDL-AMS,IEEE Std 1076.1-1999

• Pure definition of language in the LRM (Language Reference Manual)

• VHDL is very suitable for the design phases from system level to gate level

• Last VHDL upgrade with Analogue and Mixed Signal language elements (VHDL-
AMS). The digital VHDL have not been altered by the extension

• Only simulation is feasible for the analogue part because analogue synthesis is a very
complex problem affected by many boundary conditions. The mixed signal simulation
has to deal with the problem of synchronizing the digital and analogue simulators, which
has not been solved adequately, yet (from the synthesis point of view).

• Every transition from and to a different HDL abstraction level must be proven by a
functional validation (simulation)

• Analogue and digital full-custom designs made by hand, particularly for layouts

�

HDLsHDLs: Basic Concepts: Basic Concepts

• Possibility to ‘execute’ the code

• During the development phase the HDL description has to become more

and more precise until it is really possible to build the chip

• The (automatic) translation of a less detailed HDL description into a

more elaborated one is called SYNTHESIS. By default Synthesis means

RTL Synthesis i.e. a translation from RTL to Gate abstraction level

A

B

C

A

B

C

begin

Y <= A and B and C;

end process;

HDL Design Synthesis Simulation

☺

VHDL: VHDL: Abstraction LevelsAbstraction Levels

BEHAVIORAL: functional description of the model. Used at the very beginning

stage of a design in order to be a able to run a simulation as soon as possible.

Also used to describe testbenches. Such descriptions are usually simulatable,

but not synthesizable.

RTL: the description is divided into combinational logic and storage elements.The

storage elements (flip flops, latches) are controlled by a system clock. The

description is synthesizable.

GATE: the design is represented as a netlist with gates (AND, OR, NOT, ...) and

storage elements, all with cell delays. The description has been synthesized.

LAYOUT: the different cells of the target technology are placed on the chip and

the connections are routed (back-annotated additional delays). After the layout

has been verified, the circuit is ready for the production process.

VHDL: VHDL: Abstraction LevelsAbstraction Levels

RTL
Synthesis

Back-annotation

Path-dependent
parasitics

Technology Library

I0

I1

I2

O
X_OR3c

I0

I1

I2

O
X_OR3c

I0

I1

I2

O
X_OR3c I0

I1

I2

O
X_OR3c

path1

path2

Behavioral

RTL

Gate

Layout

Functional behavior

Synchronized events

Synthesizable VHDL

gates + flip flops

Netlist plus routing
parasitic delays

Highly detailed

Slow analysis

Poorly detailed

Fast analysis

VHDL: VHDL: Abstraction LevelsAbstraction Levels

Behavioral

RTL

Gate

Layout

I0

I1

I2 D Q

CK

HA HA

OR

VHDL: VHDL: Abstraction LevelsAbstraction Levels

VHDL is suitable for describing the upper 3
abstraction levels. It is not suitable to design a
layout.

The design entry in BEHAVIORAL and RTL level is
usually done by means of text editors. Behavioral
synthesis is still a dream of many researchers as
only very simple behavior models are
synthesizable. The last step from the GATE
(LOGIC) level to the final LAYOUT has been
widely automated for digital standard cell designs
by means of an automated process named Place &
Route.

Behavioral

RTL

Gate

Layout

VHDL: VHDL: Behavioral DescriptionBehavioral Description
In a behavioral VHDL description, a Boolean function,

for example, can be modeled as a simple equation

(e.g. i1 + i2 * i3) plus a delay of N ns. The worst case,

i.e. the longest delay to calculate a new output value,

is assumed here. Functional behavior is modeled with

the VHDL statement: Process

….

process (A,B) - - sensitivity list

begin

C <= C(A,B) after 50 ns;

D <= D(A,B) after 100 ns;

end process;

…..

The key word “after”
has no meaning for
synthesis

C=C(A,B)

D=D(A,B)

A

B

C

D

A

B

C

D

I/O No clock-delayed constraints

VHDL: VHDL: RTL DescriptionRTL Description

RTL level process descriptions:

• Pure combinational: described with high level instructions, such as +, *, MUX …

• Synchronous: clocked described with Flip-Flops.

VHDL: VHDL: Gate Level DescriptionGate Level Description

A gate level description contains a list of the gates of the design. It holds the actual
instantiation of the components and lists their interconnection. An equivalent
schematic of the gate structure is shown. Each element of the circuit (e.g. U13) is
instantiated as a component (e.g. H_OR3) and connected to the corresponding
signals (net456, net1801, net1802, net345). All used gates are part of the technology
library where additional information like area, propagation delay, capacity, etc. is
stored. Here delays can be applied to the used gates for simulation and timing
information is part of the synthesis library. This enables a rough validation of the
timing behavior.

…….

U13 : H_OR3

port map (

I0 => net456,

I1 => net1801,

I2 => net1802,

O => net345);

…….

☺

VHDL: VHDL: Layout Level DescriptionLayout Level Description

If the layout is completed, the wire lengths and thus

the propagation delays due to parasitics will be

known. The design can be simulated on gate level

netlist added with propagation delays, after back-

annotation, and, consequently, the timing behavior

of the entire circuit can be validated.

The back-annotated delays may make up the main

part of the entire delay in larger designs, especially

for very deep sub-micron technologies (< 0.35µm).

Nevertheless the simulation is fully digital.

.

Digital ASIC Development with VHDLDigital ASIC Development with VHDL

Layout

View

Standard Cells

Macro Cells (RAM,FIFO)

Layout: geometric design of the

technology masks for cells and

interconnections

Digital Design Digital Design

FlowFlow
HDL Editor Schematic Editor

FRONT END

Simulation

Synthesis

Foundry

Layout Editor Place & Route

BACK END

Design Rule Check (DRC) – Electrical Rule Check (ERC)

Layout Versus Schematic (LVS)

Simulation - Timing Analysis Constraints

Libraries

Post-Layout Simulation

HDLsHDLs: Synthesis: Synthesis

• Synthesis: it is a translation
of a VHDL abstraction
level to a lower, more
detailed, one

• Only a subset of HDL
statements are synthesizable

• Synthesis programs extract
the (non-generally unique)
Boolean functions from the
HDL model, then map it
onto the elements of an
ASIC gate library or a
programmable device such
as an FPGA.

• The SYNTHESIS result is a NETLIST of the module on the gate level

• Then the circuit LAYOUT for an ASIC technology can be created by means

of other tools from the NETLIST description.

�

Two different gate-level
solution depending on
constraints for synthesis

HDL: Simulations HDL: Simulations

• Specification covers functional aspects and timing behavior

• If the model shows the desired behavior the VHDL code may be synthesized;

but there is no guarantee the synthesis succeeds

Specification

Functional Simulation

Layout

HDL Design

Synthesis

Gate Level Simulation

Back Annotation

Post Layout Simulation

A

B

A

B

A

B

the timing
worsens

�

Digital ASIC Development with VHDLDigital ASIC Development with VHDL
• Synthesis selects the appropriate standard cells (Boolean gates, FF, etc.) from

the ASIC library in order to reproduce the functional description/behavior. The

library holds the information about all available gates and their parameters such

as fan-in, fan-out, delay, etc.

• The whole gate delays along the longest paths, from the output to the input of

every Flip Flop, must be less than the defined clock period

• As soon as a model built (by the foundry) of ASIC library elements is available,

a simulation on gate level can be performed (pre-layout). Here the designer has

the first idea about maximum clock frequency and critical paths.

• Then the LAYOUT design may be started.

• The propagation delay along the signal wires have to be estimated first because

the real values are available after the LAYOUT is finished. The process of

feeding these values back into the VHDL model is called back annotation. Once

again the circuit must be checked, whether it fulfills the specified timing

constraints.

☺

Vantaggi della progettazione con il linguaggio VHDLVantaggi della progettazione con il linguaggio VHDL

• linguaggio di programmazione con istruzioni concorrenti,

• trasportabilità del progetto verso:

– librerie tecnologiche diverse,

– moduli all’interno di altri progetti,

• verifica della correttezza funzionale e circuitale,

• minor tempo di progettazione.

SummarySummary
1) There is a clear distinction between a pure behavioral model and RTL level

modeling for synthesis

2) VHDL permits a structural (modular) and hierarchical description of a

digital system

3) It is possible to describe timing behavior in VHDL

4) A simulatable behavioral design can be non synthesizable

5) Back-annotation adds more delays due to interconnections

QuestionsQuestions

1) For what VHDL is mainly used ?

2) Main differences among other programming languages?

3) What is an FPGA?

4) What is an ASIC?

5) What is the difference between modularity and hierarchy?

6) What is the abstraction level?

7) What is the synthesis process?

8) What is a netlist?

9) When a VHDL code may be not synthesizable?

10) What is a layout view?

11) What is the back-annotation?

HDLsHDLs: : InstantiationInstantiation
…….

U13 : H_OR3a

port map (

I0 => net456,

I1 => net1801,

I2 => net1802,

O => net345);

…….

After a VHDL model has been synthesized a specific netlist
of instantiated components is created. This way not only a
logic gate is implemented for a given task but also a given
physical gate with specific features in terms of delays, fan-
out, etc. A specific technology library may have several
different gates with the same logic functionality but
different physical condition.

In the example the instantiated component is not just a 3-
inputs OR but it is the H_OR3a.

I0

I1

I2

OH_OR3b

I0

I1

I2

OH_OR3a

….

O <= I0 or I1 or I2;

….

I0

I1

I2

OH_OR3c

VHDL:VHDL: SequentialSequential & & Concurrent StatementsConcurrent Statements

Execution of assignments:

• Sequential

• Concurrent

Sequential Statements

- Executed sequentially

- Successive statements can override

the effects of previous ones

- Significant order of the assignment

Concurrent Statements

- Active continuously

- No matter of the statement order

- Good to model parallel circuits

Process

A

Sequential

Statements

Process

B

Sequential

Statements

Process

C

Sequential

Statements

processes run parallel

VHDL:VHDL: SequentialSequential && Concurrent StatementsConcurrent Statements

architecture rtl of shift is

signal y0,y1,y2: std_logic_vector(1 downto 0);

begin

c <= a + b; – Concurrent Statement

d <= a & b(3 downto 0); – Concurrent Statement

run0:process(ck,a,y0) – Concurrent Structure

begin

if(ck’event and ck=‘1’)then -- Sequential statement

y0 <= a; -- Sequential statement

y1 <= y0; -- Sequential statement

end if;

end process;

run1:process(y1,y2) – Concurrent Structure

begin

y2 <= y1; -- Sequential statement

y <= y2; -- Sequential statement

end process;

end rtl;

c <= a + b;

d <= a & b(3 downto 0);

Process

run0

Sequential

Statements

Process

run1

Sequential

Statements

processes and

concurrent statements

run parallel

